Volume 5, Issue 2, June 2019, Page: 7-15
In vitro Evaluation of the Anti-scavenging and Anthelmintic Activities of Artocarpus heterophyllus LAM Leaves (Moraceae) in the Democratic Republic of Congo
Lengbiye Moke Emmanuel, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Koto-te-Nyiwa Ngbolua, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Faculty of Medicine, University of Gbado-Lite, Nord Ubangi, Democratic Republic of the Congo
Lin Marcelin Messi, Department of Organic Chemistry, University of Yaounde I, Yaounde, Cameroun
Mbembo wa Mbembo Blaise, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Gédéon Ngiala Bongo, Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Faculty of Medicine, University of Gbado-Lite, Nord Ubangi, Democratic Republic of the Congo
Mutwale Kapepula Paulin, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Ngombe Kabamba Nadège, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Joséphine Ngo Mbing, Department of Organic Chemistry, University of Yaounde I, Yaounde, Cameroun
Dieudonné Emmanuel Pegnyemb, Department of Organic Chemistry, University of Yaounde I, Yaounde, Cameroun
Pius Tshimankinda Mpiana, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
Received: Aug. 17, 2019;       Accepted: Sep. 6, 2019;       Published: Sep. 24, 2019
DOI: 10.11648/j.ijbecs.20190502.11      View  23      Downloads  9
Abstract
The extracts of Arthocarpus heterophyllus Lam. leaves were evaluated in vitro for their anthelmintic activity. Benhamia rosea and B. itoleisis were used as animal models and Albendazole as reference product (positive control). After calculating the yield, it appears that the ethanol extracts had given a better yield (0.70%) compared to the organic extracts. The result of the phytochemical screening by TLC (thin layer chromatography) showed the presence of phenolic compounds including anthocyanins, coumarins, anthraquinones, phenol acids and terpenoids. From this study, it appears that A. heterophyllus Lam. contains various secondary metabolites such as flavonoids (2.63±0.007mg EQ/100g MS), phenolic acids, coumarins, anthraquinones, terpenoids and anthocyanins (10.46±1.05 mg/100 MS) and total polyphenols (27.33±9.34 mg EAG/100 g MS). The organic/terpenic acids extract showed very high antioxidant activity against the ABTS radical (IC50: 0.97 ± 0.13 µg/ml). The ethanolic and organic acid extracts from the leaves of this plant species have an anthelminthic activity, but this activity is dose dependent. However, at the lowest concentration (0.625 mg/mL), ethanolic extract showed better activity with a paralysis time of 67.3±1.8 minutes compared to 76±2.1 minutes for the organic extract. But the mortality rate at the lowest concentration was higher for organic extracts, at 62.7% compared to 33.3% for ethanol extracts. It is therefore desirable to test bioactive extracts on gastrointestinal parasites of farm animals in order to confirm the results obtained. Ongoing in-depth phytochemical studies will identify the chemical compound (s) and active principle (s) for the formulation of anthelminthic phytomedicine for managing pathologies due to helminthes in farm animals.
Keywords
Anthelminthic Activity, Earthworm, Phytomedicine, Arthocarpus heterophyllus
To cite this article
Lengbiye Moke Emmanuel, Koto-te-Nyiwa Ngbolua, Lin Marcelin Messi, Mbembo wa Mbembo Blaise, Gédéon Ngiala Bongo, Mutwale Kapepula Paulin, Ngombe Kabamba Nadège, Joséphine Ngo Mbing, Dieudonné Emmanuel Pegnyemb, Pius Tshimankinda Mpiana, In vitro Evaluation of the Anti-scavenging and Anthelmintic Activities of Artocarpus heterophyllus LAM Leaves (Moraceae) in the Democratic Republic of Congo, International Journal of Biomedical Engineering and Clinical Science. Vol. 5, No. 2, 2019, pp. 7-15. doi: 10.11648/j.ijbecs.20190502.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Herrero M, Havlik, P, McIntire J, Palazzo A, Valin H (2014). L’avenir de l’élevage africain: Réaliser le potentiel de l’élevage pour la sécurité alimentaire, la réduction de la pauvreté et la protection de l’environnement en Afrique subsaharienne. Bureau du représentant spécial des Nations Unies pour la sécurité alimentaire et nutritionnelle et du Coordonnateur du système des Nations Unies contre la grippe (UNSIC), Genève: Suisse.
[2]
Okombe VE, Mbumba T, Pongombo CS. (2013). Efficacité antiparasitaire de la poudre de graines de courge (Cucurbita moschata L.) sur les helminthes gastro-intestinaux de la chèvre locale élevée à Lubumbashi en République Démocratique du Congo. Int. J. Biol. Chem. Sci. 7 (3): 953-960.
[3]
Kreceka CR, Wallerd JP (2006). Towards the implementation of the “basket of options” approach to helminth parasite control of livestock: Emphasis on the tropics/subtropics. Veterinary Parasitology; 139 (4): 270-282.
[4]
Ouattara L, Dorchies PHD (2001). Helminthes gastro-intestinaux des moutons et chèvres en zones sub-humide et sahélienne du Burkina Faso. Revue Méd. Vét.; 152 (2): 165-170.
[5]
Kabore A, Tamboura HH, Belem MGA, Traore A (2007). Traitements ethno-vétérinaires des parasitoses digestives des petits ruminants dans le plateau central du Burkina Faso. Int. J. Biol. Chem. Sci.; 1 (3): 297-304.
[6]
Githiori JB, Hoglund J, Waller PJ, Baker RL (2002). Anthelminthic activity of preparations derived from Myrsine africana and Rapanea melanophloeos against the nematode parasite, Haemonchus contortus of sheep. J. Ethnopharmacol; 45 (18): 312-324.
[7]
Burke JM, Wells A, Casey P, Miller JE (2009). Garlic and papaya lack control over gastrointestinal nematodes in goats and lambs. Veterinary Parasitology; 159 (2): 171-174.
[8]
Dedehou VF., Olounladé PA., Adenilé AD., Azando E. V. B., Alowanou, G. G., Daga, F. D. et Hounzangbé, A. M. S. (2014). Effets in vitro des feuilles de Pterocarpus erinaceus et des cosses de fruits de Parkia biglobosa sur deux stades du cycle de développement de Haemonchus contortus nématode parasite gastro-intestinal de petits ruminants. Journal of Animal &Plant Sciences 22 (1): 3368-3378.
[9]
Getachew T, Dorchies P, Jacquiet P (2007). Trends and challenges in the effective and sustainable control of Haemonchus contortus infection in sheep. Review. ParasiteJournal 14: 3-14.
[10]
Dedehou VF, Olounladé PA, Adenilé AD, Azando EVB, Alowanou GG, Daga FD, Hounzangbé AMS (2014). Effets in vitro des feuilles de Pterocarpus erinaceus et des cosses de fruits de Parkia biglobosa sur deux stades du cycle de développement de Haemonchus contortus nématode parasite gastro-intestinal de petits ruminants. Journal of Animal &Plant Sciences 22 (1): 3368-3378.
[11]
Sidi IYMS, Azando EVB, Hounzangbe AMS (2015). Effets combinés des feuilles de Newbouldia laevis et de Zanthoxylum zanthoxyloïdes sur les nématodes parasites gastro-intestinaux des ovins Djallonké. Int. J. Biol. Chem. Sci. 9 (4): 2078-2090.
[12]
Gnoula C, Guissou I, Dubois J, Duez P (2007). Carboxyfluorescein diacetate as an indicator of Caenorhabditis elegans viability for the development of an in vitro anthelmintic drug assay. Talanta 71 (5): 1886-1892. doi.org/10.1016/j.talanta.2006.08.025
[13]
Okombe EV (2011). Activité antihelminthique de la poudre d'écorce de racine de Vitex thomasii De Wild (Verbenaceae) sur Haemonchus contortus chez la chèvre. Thèse de doctorat, Médecine vétérinaire et Santé animal, Université de Lubumbashi: RD Congo.
[14]
Chartier C, Lespine A, Hoste H, Alvinerie M (2001). Les endectocides chez les caprins: pharmacologie, efficacité et conditions d'utilisation dans le contexte de la résistance aux anthelminthiques. Rech. Rum. 8: 181-186.
[15]
Kaplan RM (2004). Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 20 (10): 477-481.
[16]
Wabo-Poné J, Yondo J, Fossi TO, Komtangi MC, Bilong-Bilong CF, Mpoame M. (2011). The in vitro effects of Chenopodium ambrosioides (Chenopodiaceae) extracts on the parasitic nematode Heligmosomoid esbakeri (Nematoda, Heligmosomatidae). Journal of Pharmacognosy and Phytotherapy (3): 56-62.
[17]
Fajmi AK, Taiwo AA (2005). Herbal remedies in animal parasitic diseases in Nigeria. Journal of Pharmacognosy and Phytochemestry; 6 (5): 2533-2536.
[18]
Luseba D, Van Der Merwe D (2007). Ethnoveterinary medicine practices among Tsonga speaking people of South Africa. Onderstepoort Journal of Veterinary Research. 12 (9): 243-256.
[19]
Favier A (2003). Cours de Biochimie: le stress oxydant, mécanismes biochimiques. Grenoble: France.
[20]
Ongoka PR, Diatewa M, Ampa R, Ekouya A, Ouamba JM, Gbeassor M, Abena AA (2012). Evaluation in vitro de l’activité anthelminthique des plantes utilisées au Congo Brazzaville dans le traitement des maladies parasitaires. Sciences et Techniques 12/13 (4): 101-107.
[21]
Guissou LP, Ouedraogo S, Sanfo A, Some N, Lompo M (1988). Mise au point d’un modèle biologique de test antiparasitaire appliqué aux plantes médecinales. Pharm. Méd. Trad. Afr. (10): 105-133.
[22]
Mutwale KP, Mungitshi, PM, Franck T, Ngoyi D M, Kalenda, PDT, Ngombe NK, Tamfum J (2016). Antioxidant potentiality of three herbal teas consumed in Bandundu rural areas of Congo Antioxidant potentiality of three herbal teas consumed in Natural Product Research 31: 1940-1943. https://doi.org/10.1080/14786419.2016.1263844.
[23]
Inkoto LC, Bongo NG, Mutwale KP, Masengo AC, Gbolo ZB, Tshiama C, Ngombe KN, Iteku BJ, Mbemba FT, Mpiana PT, Ngbolua KN (2018). Microscopic features and chromatographic fingerprints of selected Congolese medicinal plants: Aframomum alboviolaceum (Ridley) K. Schum, Annona senegalensis Pers. and Mondia whitei (Hook.f.) Skeels. Emergent Life Sciences Research 4 (1): 1-10.
[24]
Ngbolua KN, Djolu DR (2019). Étude pharmaco-biologique de Sarcocephalus latifolius (Rubiaceae): Plante anti-drépanocytaire de Tradition en République démocratique du Congo. Editions Universitaires Européennes, Riga: Latvia. ISBN: 978-613-8-46013-8.
[25]
Ngbolua KN, Tshilanda DD, Djolu RD, Falanga MC, Masengo AC, Tshibangu DST, Iteku BJ, Mudogo V, Mpiana PT (2017). Anti-Sickle Cell Anemia and Bacterial Inhibitory Effects of Uvariodendron molundense (Diels) R. E. Fr. (Annonaceae) from Ubangi River Basin, DR Congo. Journal of Biosciences and Medicines 5: 71-84.
[26]
Bukatuka FC, Ngombe KN, Mutwale KP, Moni BM, Makengo KG, Pambu LA, Bongo NG, Mbombo MP, Musuyu MD, Maloueki U, Ngbolua KN, Mbemba FT (2016). Bioactivity and nutritional values of some Dioscorea species traditionally used as medicinal foods in Bandundu, DR Congo. European Journal of Medicinal Plants 14 (1): 1-11.
[27]
Kisuba KM, Mutwale KP, Kabeya KJ, Moni B, Makengo G, Mbombo MP, Tujibikila MA, Mbadiko MC, Dibaluka MS, Ngbolua KN, Ngombe KN, Mbemba FT (2017). Selenium Content and Antioxidant potential of some edible wild mushrooms from Bandundu Area, DR Congo. Natural Resources 8: 103-113.
[28]
Bruneton J (1999). Pharmacognosie, Phytochimie et Plantes médicinales. Edition Technique et Documentation-Lavoisier, 3e édition, Paris: France.
[29]
Prakash O, Srivastava R, Kumar R, Mishra S, Srivastava S (2015). Preliminary Pharmacognostic and Phytochemical Studies on leaves of Artocarpus heterophyllus. International journal of natural products and marine biology; 1 (1): 35–40.
[30]
Saxena K, Irchhaiya R, Chagti KK (2016). Antihepatotoxic Effect of Artocarpus heterophyllus Leaves against Paracetamol induced Hepatic Damage in Albino rats. Int. J. Pharm. Life sci. 8 (11): 712-976.
[31]
Thapa N, Thapa P, Bhandari J, Niraula P, Shrestha N, Shrestha BG (2016). Study of Phytochemical, Antioxidant and Antimicrobial Activity of Artocarpus heterophyllus. Nepal Journal of Biotechnology 4 (1): 47-53.
[32]
Sivagnanasundaram P, Karunanayake K (2015). Phytochemical Screening and Antimicrobial Activity of Artocarpus heterophyllus and Artocarpus altilis Leaf and Stem Bark Extracts. OUSL Journal 8(9): 51-67.
[33]
Quintin A, Frank J. (2004). Veterinary anthelmintics: old and new. Trends in Parasitology 23 (20): 17-25.
[34]
Shekhawat N, Vijayvergia R (2011). Anthelmintic Activity of Extracts of Some Medicinal Plants. Indian J Med Res 3 (2): 183-187.
[35]
Yashaswini T, Akshara KAM, Prasad K, Kumar MD, Akshaykumar K (2016). Anthelmintic activity of seed extracts of Artocarpus heterophyllus. IOSR Journal of Pharmacy and Biological Sciences 5 (11): 19-23.
[36]
Anbu J, Murali A, Sathiya R, Saraswathy GR, Azamthulla M (2011). In Vitro Anthelmintic Activity of Leaf Ethanolic Extract of Cassia Alata and Typha angustifolia. MS Ramaiah University of Applied Sciences Journal 14 (2): 41-44.
[37]
Vidyadhar S, Saidulu M, Gopal TK, Chamundeeswari D, Umamaheswara R, Banji D (2010). In vitro anthelmintic activity of the whole plant of Enicostemma littorale by using various extracts. International Journal of Applied Biology and Pharmaceutical Technology 1 (3): 1119-1125.
[38]
Deore SL, Khadabadi SS, Kamdi KS, Ingle VP, Kawalkar NG, Sawarkar PS, Patil UA, Vyas AJ (2009). In vitro anthelmintic activity of Cassia tora. Int J Chem Tech Res 1 (2): 177-179.
[39]
Vedha HBN, Saravana KP, Ramya DD (2011). Comparative in vitro anthelmintic activity of the latex of Ficus Religinosa, Ficus elastica and Ficus bengalensis. J Phytol Phytopharm; 3 (3): 26-30.
[40]
Umesh BJ, Shrimant NP, Bapat VA (2010). Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods Hum Nutr. 65: 99–104. Doi: 10.1007/s11130-010-0155-7.
[41]
Loizzo MR, Tundis R, Chandrika UG, Abeysekera AM, Menichini F, Frega NG (2010). Antioxidant and Antibacterial Activities on Foodborne Pathogens of Artocarpus heterophyllus Lam. (Moraceae) Leaves Extracts. Institute of Food Technologists 75 (5): 291-295.
[42]
Sreeletha AS, Lini JJ, Dhanyalekshmi CS, Sabu KR, Pratap CR (2017). Phytochemical, Proximate, Antimicrobial, Antioxidant and FTIR Analyses of Seeds of Artocarpus heterophyllus Lam. 5 (1): 41-50.
[43]
Salma A. (2015). L’effet des facteurs climatiques sur la variation de quelques métabolites secondaires suivis de l’activité antibactérienne chez les deux espèces Hyoscyamus albus L. et Hyoscyamus muticus L. Mémoire de mastère, Université des Frères Mentouri Constantine Faculté des Sciences de la Nature et de la Vie, Algérie.
[44]
Zouiten H (2006). Résistance aux anthelminthiques des nématodes parasites du tube digestif chez les ovins et les équidés au Maroc. Thèse doctorat N°2312. Université Mohammed V- Agdal, Faculté des Sciences, Rabat: Maroc.
[45]
Min BR, Barry TN, Attwood GT and Mc Nabb WC (2003). The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106/ 3-19.
[46]
Molan AL, Sivakumaran S, Spencer PA and Meagher LP (2004). Green tea flavan-3-ols and oligomeric proanthocyanidins inhibit the motility of infective larvae of Teladorsagia circumcincta and Trichostrongylus colubriformis in vitro. Res. Vet. Sci. 77: 239–243.
Browse journals by subject